List 6

Derivative applications (monotonicity, convexity, min/max)
128. Calculate $f^{\prime}(2)$ for the function $f(x)=x^{4}+4 x$.
129. Find the slope of the tangent line to $y=x^{4}+4 x$ at the point $(2,24)$.
130. Give an equation for the tangent line to $y=x^{4}+4 x$ through the point $(2,24)$.
131. Give an equation for the tangent line to $y=\frac{1}{\sqrt{x}}$ at $x=4$.
132. Give an equation for the tangent line to $y=\sin (\pi x)$ at $x=2$.
133. Give an equation for the tangent line to $y=\sin (x)$ at $x=\frac{\pi}{3}$.
134. Graph the curve $y=\sqrt{x}$ and the line tangent to that curve at $(1,1)$.
135. (a) Give the linear approximation to \sqrt{x} near $x=1$.
(b) Use the approximation from part (a) to estimate $\sqrt{1.2}$.
(c) The true value of $\sqrt{1.2}$ is $1.09545 \ldots$, so is $L(1.2)$ a good approximation?
(d) Use the approximation from part (a) to estimate $\sqrt{8}$.
(e) The true value of $\sqrt{8}$ is $2.82843 \ldots$, so is $L(8)$ a good approximation?
136. If f is a function with $f(-4)=2$ and $f^{\prime}(-4)=\frac{1}{3}$, give the linear approximation to $f(x)$ near $x=-4$.
137. If g is a function with $g(5)=12$ and $g^{\prime}(5)=2$, use a linear approximation to estimate the value of $g(4.9)$.
138. Give an equation for the tangent line to $y=\sin (x)$ at $x=\frac{\pi}{3}$.
139. Find a line that is tangent to both $y=x^{2}+20$ and $y=x^{3}$.
140. (a) For what value(s) of x does $x^{3}-18 x^{2}=0$?
(b) For what value(s) of x does $3 x^{2}-36 x=0$?
(c) For what value(s) of x does $6 x-36=0$?

A number c is a critical point of $f(x)$ if either $f^{\prime}(c)$ does not exist or $f^{\prime}(c)=0$.
If $f^{\prime}(a)>0$ then f is increasing at $x=a$.
If $f^{\prime}(a)<0$ then f is decreasing at $x=a$.
141. What are the critical points of $x^{3}-18 x^{2}$?
142. Find all the critical points of $8 x^{5}-57 x^{4}-24 x^{3}+9$.
143. List all the critical points of the function graphed below (portions of its tangent lines at $x=-2, x=1, x=3$, and $x=6$ are shown as dashed lines).

144. Is the function

$$
f(x)=x^{8}-6 x^{3}+29 x-12
$$

increasing, decreasing, or neither when $x=-1$?
145. (a) On what (possibly infinite) interval or intervals is $2 x^{3}-3 x^{2}-12 x$ decreasing?
(b) On what (possibly infinite) interval or intervals is $2 x^{3}-3 x^{2}-12 x$ increasing?
146. List all critical points of $f(x)=\frac{3}{4} x^{4}-7 x^{3}+15 x^{2}$ in the interval $[-3,3]$.
147. For each graph below, is there a critical point at $x=0$?
(a)

(b)

(c)

(d)

(e)

(f)

148. The derivative of

$$
f(x)=\frac{4 x+1}{3 x^{2}-12} \quad \text { is } \quad f^{\prime}(x)=\frac{-4 x^{2}-2 x-16}{3 x^{4}-24 x^{2}+48} .
$$

Using this, find all the critical points of $f(x)$.
149. Find all the critical points of
(a) $f(x)=x^{2}-\cos (x)$.
(b) $f(x)=x+2 \cos (x)$.
(c) $f(x)=2 x+\cos (x)$.
(d) $f(x)=x^{2}+x-\sin (x)$.
¿ (e) $f(x)=x^{2}+x+\cos (x)$.

To find the absolute extremes of a fn. on a closed, bounded interval:

(1) Find the critical points of f but ignore critical points outside the interval.
(2) Compute the value of f at the critical points and the endpoints of the interval.
(3) The point(s) from (2) with the largest f-value are absolute max, and point(s) with the smallest (i.e., most negative) f-value are absolute min.
150. On the interval $[-6,3]$, find the absolute extremes of

$$
2 x^{3}-21 x^{2}+60 x-20
$$

151. Find the absolute extremes of

$$
x^{4}-4 x^{3}+4 x^{2}-14
$$

on the interval $[-3,3]$.
152. Find the absolute extremes of $x+2 \cos (x)$ with $0 \leq x \leq 2 \pi$.
153. Find the absolute minimum and absolute maximum of

$$
f(x)=\frac{3}{4} x^{4}-7 x^{3}+15 x^{2}
$$

with $|x| \leq 3$.
154. (a) Does the function $\frac{x-5}{x+2}$ have an absolute maximum on the interval $[-8,4]$?
(b) Does the function $\frac{x-5}{\cos (x)+2}$ have an absolute maximum on $[-8,4]$?
155. A car drives in a straight line for 10 hours with its position after t hours being $24 t^{2}-2 t^{3}$ kilometers from its initial position. How far away is the farthest point the car reaches in 10 hours, and when does this occur?
156. (a) Calculate the derivative of $5 x^{2}-3 \sin (x)$.
(b) Calculate the derivative of $10 x-3 \cos (x)$.
(c) Calculate the derivative of $10+3 \sin (x)$.
(d) Calculate the derivative of $3 \cos (x)$.
(e) Calculate the derivative of $-3 \sin (x)$.

The second derivative of a function is the derivative of its derivative. The second derivative of $y=f(x)$ with respect to x can be written as any of

$$
f^{\prime \prime}(x), \quad f^{\prime \prime}, \quad\left(f^{\prime}\right)^{\prime}, \quad f^{(2)}, \quad y^{\prime \prime}, \quad \frac{\mathrm{d}}{\mathrm{~d} x}\left[\frac{\mathrm{~d} f}{\mathrm{~d} x}\right], \quad \frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}, \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} .
$$

We say f is twice-differentiable if $f^{\prime \prime}$ exists on the entire domain of f. Higher derivatives (third, fourth, etc.) are defined and written similarly.
A twice-differentiable function $f(x)$ is concave up at $x=a$ if $f^{\prime \prime}(a)>0$. A twice-differentiable function $f(x)$ is concave down at $x=a$ if $f^{\prime \prime}(a)<0$.
An inflection point is a point where the concavity of a function changes.
157. Compute the following second derivatives:
(a) $f^{\prime \prime}(x)$ for $f(x)=x^{12}$
(d) $\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\left(5 x^{2}-7 x+28\right)$
(b) $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}$ for $f(x)=x^{3}+x^{8}$
(e) $f^{\prime \prime}(x)$ for $f(x)=-2 x^{8}+x^{6}-x^{3}$
(c) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ for $y=8 x-4$
(f) $\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}$ for $f(x)=a x^{2}+b x+c$
158. Find $f^{\prime \prime \prime}(x)=\frac{\mathrm{d}^{3} f}{\mathrm{~d} x^{3}}=f^{(3)}(x)$ (the third derivative) for $f(x)=x^{7}$.
159. Give $f^{(5)}(x)=\frac{\mathrm{d}^{5} f}{\mathrm{~d} x^{5}}$ (the fifth derivative) for $f(x)=5 x^{2}-3 \sin (x)$.
160. (a) Is the function $3 x^{2}+8 \cos (x)$ concave up or concave down at $x=0$?
(b) Is the function $3 x^{2}+5 \cos (x)$ concave up or concave down at $x=0$?
161. On what interval(s) is $54 x^{2}-x^{4}$ concave up?
162. For $f(x)=x^{3}-x^{2}-x$,
(a) At what x value(s) does $f(x)$ change sign? That is, list values r where either $f(x)<0$ when x is slightly less than r and $f(x)>0$ when x is slightly more than r, or $f(x)>0$ when x is slightly less than r and $f(x)<0$ when x is slightly more than r.
(b) At what x value(s) does $f^{\prime}(x)$ change sign?
(c) At what x value(s) does $f^{\prime \prime}(x)$ change sign?
(d) List all inflection points of $x^{3}-x^{2}-x$.

W163. Give an example of a function with one local maximum and two local minimums but no inflection points.
164. Which graph below has $f^{\prime}(0)=1$ and $f^{\prime \prime}(0)=-1$?
(A)

(B)

(C)

(D)

(E)

(F)

For a twice-differentiable function $f(x)$ with a critical point at $x=c, \ldots$

The Second Derivative Test:

- If $f^{\prime \prime}(c)>0$ then f has a local minimum at $x=c$.
- If $f^{\prime \prime}(c)<0$ then f has a local maximum at $x=c$.
- If $f^{\prime \prime}(c)=0$ the test is inconclusive.

The First Derivative Test:

- If $f^{\prime}(x)<0$ to the left of $x=c$ and $f^{\prime}(x)>0$ to the right of $x=c$ then f has a local minimum at $x=c$.
- If $f^{\prime}(x)>0$ to the left of $x=c$ and $f^{\prime}(x)<0$ to the right of $x=c$ then f has a local maxium at $x=c$.
- If $f^{\prime}(x)$ has the same sign on both sides of $x=c$ then $x=c$ is neither a local minimum nor a local maximum.

165. Find all critical points of

$$
4 x^{3}+21 x^{2}-24 x+19
$$

and classify each as a local minimum, local maximum, or neither.
166. Find and classify ${ }^{1}$ the critical points of

$$
f(x)=x^{4}-4 x^{3}-36 x^{2}+18 .
$$

167. Find the inflection points of the function from Task 166.
168. Find and classify the critical points of $f(x)=x(6-x)^{2 / 3}$.
169. Find and classify the critical points of

$$
\frac{3}{2} x^{4}-16 x^{3}+63 x^{2}-108 x+51
$$

170. Label each of following statements as true or false:
(a) "Every critical point of a differentiable function is also a local minimum."
(b) "Every local minimum of a differentiable function is also a critical point."
(c) "Every critical point of a differentiable function is also an inflection point."
(d) "Every inflection point of a differentiable function is also a critical point."
171. For the function

$$
f(x)=\frac{1}{8} x^{4}-3 x^{2}+8 x+15
$$

find
(a) the interval(s) where f is monotonically increasing,
(b) the interval(s) where f is monotonically decreasing,
(c) the critical points,
(d) all local minima,
(e) all local maxima,
(f) and the inflection points.
172. What is the maximum number of inflection points that a function of the form

$$
\text { _ } x^{6}+\ldots x^{5}+\ldots x^{4}+\ldots x^{3}+\ldots x^{2}+\ldots x+\ldots
$$ can have?

2173. Give two critical points of $\sin \left(5^{\cos \left(2 x^{3}+8\right)}\right)$.

[^0]174. Match the functions (a)-(f) to their derivatives (I)-(VI).
(a)

(I)

(b)

(II)

(c)

(III)

(d)

(IV)

(e)

(V)

(f)

(VI)

[^0]: " Classify the critical points" means to say whether each one is a local minimum, local maximum, or neither.

